Research focus
From the fundamentals of electrobiochemistry to microbial electrochemical technologies
Since 2001, the fundamentals of microbial electrochemistry and microbial electrochemical technologies represent a cornerstone of the Schröder group's research activities. With more than 100 publications, our team belongs to the internationally leading groups in this research area.
We study the fundamentals of microbial electrochemistry in order to understand and to exploit the interactions of microorganims and electrodes. Based on this understanding, we develop novel electrode materials and electrode designs for high performance bioelectrochemical systems, like microbial fuel cells or microbial electrolysis cells. In order to take these systems into applications, we develop scalable reactors and study their application potential.
Ongoing Projects
- US Office of Naval Research Global (ONRG): Fundamentals of Canode Biofilm Electro-metabolism Award Nr. N62909-19-1-2025
- BMBF joint project (FKZ02WER1531B): Demonstration of a bio-electrochemical fuel cell for sustainable wastewater treatment - DEMO-BioBZ, subproject "Development of bioelectrochemical selection and cultivation methods and development of a new reactive control strategy for the Demo-BioBZ (https://www.demo-biobz.de/)
Finished Projects (Selection)
- 2017-2019 DFG Project SCHR 753/10-2: Artificial three-dimensional biotops with electroactive bacteria for highly efficient microbial fuel cells by use of stimuli responsive complex nanoscaled structures
- 2016-2019 BMBF joint project (FKZ 03XP0041F) Elektro-Paper – Development of paper-based electrodes for microbial electrochemical wastewater treatment.
- 2015-2019 NTH Research Group ElektroBak - Innovative Materials and Concepts for Microbial Electrochemical Systems
- 2014-2016 BMBF joint project (02WER1317C): BioBZ: The bioelectrochemical fuel cell as a component of an energy-generating wastewater treatment plant (project management Cutec, Clausthal); subproject C
Review papers, books, book chapters
Uwe Schröder
A basic introduction into microbial fuel cells and microbial electrocatalysis
ChemTexts (2018) 4:19 DOI: 10.1007/s40828-018-0072-1
Uwe Schröder & Falk Harnisch
Life electric – Nature as a blueprint for the development of microbial electrochemical technologies
Joule 1 (2017) DOI: http://dx.doi.org/10.1016/j.joule.2017.07.010
Amit Kumar, Huan-Hsuan Hsu, Paul Kavanagh, Frédéric Barrière, Piet N. L. Lens, Laure Lapinsonnière, John H. Lienhard V,
Uwe Schröder, Xiaocheng Jiang and Dónal Leech
The ins and outs of microorganism – electrode electron transfer reactions
Nature Reviews Chemistry 1 (2017) Article number: 0024; doi:10.1038/s41570-017-0024
Uwe Schröder, Falk Harnisch, Lars Angenent
Microbial electrochemistry and technology: terminology and classification
Energy and Environmental Science 8 (2015), 513-519
U. Schröder
Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year–old discovery
Journal of Solid State Electrochemistry, 15 (2011) 1481-1486
U. Schröder
Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
Physical Chemistry Chemical Physics 9 (2007) 2619-2629
Bioelectrochemical Systems: From extracellular electron transfer to biotechnological application
Edited by K. Rabaey, L. Angenent, U. Schröder, J. Keller
IWA Publishing, 2010, 488p.
ISBN:9781843392330
Microbial Electrochemistry
Karina Michalska, Robert Keith Brown, Uwe Schröder
Carbon source priority and availability limit bidirectional electron transfer in freshwater mixed culture electrochemically active bacterial biofilms
Bioresources and Bioprocessing (2023) 10:64; 10.1186/s40643-023-00685-w
Paniz Izadi, Uwe Schröder
What is the Role of Individual Species within Bidirectional Electroactive Microbial Biofilms: A Case Study on Desulfarculus baarsii and Desulfurivibrio alkaliphilus
ChemElectroChem 9 (2022) e202101116
Paniz Izadi, Marten Gey, Nicolas Schlüter, Uwe Schröder
Bidirectional electroactive microbial biofilms and the role of biogenic sulfur in charge storage and Release
iScience 24 (2021) 102822; doi.org/10.1016/j.isci.2021.102822
Carlo Santoro, Sofia Babanova, Pierangela Cristiani, Kateryna Artyushkova, Plamen Atanassov, Alain Bergel, Orianna Bretschger, Robert Keith Brown, Kayla Carpenter, Alessandra Colombo, Rachel Cortese, Benjamin Erable, Falk Harnisch, Mounika Kodali, Sujal Phadke, Sebastian Riedl, Luis F. M. Rosa, Uwe Schröder
How comparable are microbial electrochemical systems around the globe? An electrochemical and microbiological cross-laboratory study
ChemSusChem14 (2021) 2313-2330
Phillipp Sievers, Christopher Moß, Uwe Schröder, Diethelm Johannsmann
Use of Torsional Resonators to Monitor Electroactive Biofilms
Biosensors and Bioelectronics 110 (2018) 225-232
Fabian Kubannek, Uwe Schröder, Ulrike Krewer
Revealing metabolic storage processes in electrode respiring bacteria by differential electrochemical mass spectrometry
Bioelectrochemistry 121 (2018) 160-168
Igor Schmidt, Alexander Pieper, Hilke Wichmann, Dr. Boyke Bunk, Katharina Huber, Jörg Overmann, Peter Jomo Walla, Uwe Schröder
In Situ Autofluorescence Spectroelectrochemistry for the Study of Microbial Extracellular Electron Transfer
ChemElectroChem (2017) DOI: 10.1002/celc.201700675
Igor Schmidt, Alaaeldin Gad, Gregor Scholz, Heidi Boht, Michael Martens, Meinhard Schilling, Hutomo Suryo Wasisto, Andreas Waag, Uwe Schröder
Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms
Biosensors & Bioelectronics 94 (2017) 74-80
Hoang K. Ly, Falk Harnisch, Siang-Fu Hong, Uwe Schröder, Peter Hildebrandt, Diego Millo
Unraveling the interfacial electron transfer dynamics of electroactive microbial biofilms by surface-enhanced Raman spectroscopy
ChemSusChem 6 (2013) 487-492
A. A. Carmona-Martinez, F. Harnisch, U. Kuhlicke, T.R. Neu, U. Schröder
Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential
Bioelectrochemistry (2012)
A. A. Carmona-Martinez, F. Harnisch, L. A. Fitzgerald, J. C. Biffinger, B. R. Ringeisen, U. Schröder
Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants
Bioelectrochemistry, 81 (2011) 74–80
D. Millo, F. Harnisch, S.A. Patil. H. K. Ly, U. Schröder, P. Hildebrandt
In situ Spectroelectrochemcial Investigation of electrocatalytic microbial biofilms by surface-enhanced resonance raman spectroscopy
Angewandte Chemie International Edition 50 (2011) 2625–2627; Angewandte Chemie 123 (2011) 2673–2675
K. Fricke, F. Harnisch, U. Schröder
On the use of cyclic voltammetry for the study of the anodic electron transfer in microbial fuel cells
Energy & Environmental Science 1 (2008) 144-147
Electrode concepts
Laura Beuth, Catharina Philine Pfeiffer, Uwe Schröder
Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity
Energy & Environmental Science 13 (2020) 3102-3109
Christopher Moß, Niklas Jarmatz, Janina Heinze, Stephan Scholl, Uwe Schröder
Optimal Geometric Parameters for 3D Electrodes in Bioelectrochemical Systems: A Systematic Approach
ChemSusChem 13 (2020) 5119-5129
Christopher Moß, Andreas Behrens, Uwe Schröder
The limits of three‐dimensionality ‐ Systematic assessment of effective anode macro‐structure dimensions for mixed culture electroactive biofilms
ChemSusChem 13 (2020) 582-589
Christopher Moß, Sunil A. Patil, Uwe Schröder
Scratching the surface – How decisive are microscopic surface structures on growth and performance of electrochemically active bacteria?
Frontiers in Energy Research7 (2019) 18; doi: 10.3389/fenrg.2019.00018
André Baudler, Markus Langner, Camilla Rohr, Andreas Greiner, Uwe Schröder
Metal-polymer hybrid architectures as novel anode platform for microbial electrochemical technologies
ChemSusChem 10 (2017) 253-257
A. Baudler*, I. Schmidt*, M. Langner, A. Greiner, U. Schröder
Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems
Energy and Environmental Science 8 (2015) 2048-2055
Shuiliang Chen, Guanghua He, Qin Liu, Falk Harnisch, Yan Zhou, Yu Chen, Hanif Muddasir, Suqin Wang, Xinwen Peng, Haoqing Hou, Uwe Schröder
Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis
Energy & Environmental Science 5 (2012) 9769-9772
Reactor development and applied research
Diana Y. Alvarez Esquivel, Robert Keith Brown, Stefan Knohl, Uwe Schröder
Developing cheap and mass-producible graphite-filled paper as an anode material for microbial electrochemical technologies
ChemElectroChem 7 (2020) 1851-1859
Shuiliang Chen, Sunil A. Patil, Robert Keith Brown, Uwe Schröder
Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation
Applied Energy 233-234(2019) 15-28
Shuiliang Chen, Sunil A. Patil, Robert Keith Brown, Uwe Schröder
Aerobic microbial electrochemical technology based on the coexistence and interactions of aerobes and exoelectrogens for synergistic pollutant removal from wastewater
Environmental Science: Water Research & Technology 5 (2019) 60-69
Shuiliang Chen, Sunil A. Patil, Uwe Schröder
A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells
Applied Energy 211 (2018) 1089-1094
Sebastian Riedl, Robert Keith Brown, Sarah Klöckner, Katharina J. Huber, Boyke Bunk, Jörg Overmann, Uwe Schröder
Successive conditioning in complex artificial wastewater increases the performance of electrochemically active biofilms treating real wastewater
ChemElectroChem (2017) DOI: 10.1002/celc.201700929
Robert Keith Brown, Ulrike Christiane Schmidt, Falk Harnisch, Uwe Schröder
Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells
J. Power Sources 356 (2017) 473-483
Jörg Kretzschmar, Sebastian Riedl, Robert Keith Brown, Uwe Schröder, Falk Harnisch
eLatrine: Lessons Learned from the Development of a Low-Tech MFC Based on Cardboard Electrodes for the Treatment of Human Feces
Journal of the Electrochemical Society, 164 (2017) H3065-H3072
R. K. Brown, F. Harnisch, S. Wirth, H. Wahlandt, T. Dockhorn, N. Dichtl, U. Schröder
Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell
Bioresource Technology 163 (2014) 206-213
R. K. Brown, F. Harnisch, T. Dockhorn, U. Schröder
Examining sludge production in bioelectrochemical systems treating domestic wastewater.
Bioresource Technology 198 (2015) 913–917
Thomas Krieg, Anne Sydow, Uwe Schröder, Jens Schrader, Dirk Holtmann
Reactor concepts for bioelectrochemical syntheses and energy conversion
Trends in Biotechnology 32 (2014) 645-655
Green Electrosynthesis
Electroorganic syntheses are syntheses of organic compounds using electrochemical processes. Our group is dedicated to electrosynthesis, especially from the perspective of green, sustainable chemistry and energy storage. A particular focus is on the use of natural, biogenic feedstocks as a basis for the synthesis of renewable platform chemicals and biogenic energy storage.
Research Projects
Ongoing Projects
- DFG-NSF Future Fuels and Chemicals from Electrocatalytic Upgrading: Advancing Kinetic Understanding using Operando Spectroscopic Approaches and Quantum Chemical Modeling (SCHR 753/12-1)
- BMWK-Joint projects Electrochemical synthesis as a basic technology for energy-efficient production of biogenic platform chemicals - ElektroSyn - (02EN2071D)
Finished Projects
- Fundamentals of ElectroFuel Synthesis for Aviation im Exzellenzcluster 2163/1: SE2A – Sustainable and Energy-Efficient Aviation (@ TU Braunschweig)
- Wissenschaftsallianz TUBS/LUH - Fördermaßnahme EW 3: Junior Research Group Regenerative Chemical Energy Storage as Fuels of the Future
Patrick Drögemüller, Tobias Stobbe, Uwe Schröder
Closing the Gap: Towards a Fully Continuous and Self‐Regulated Kolbe Electrosynthesis
ChemSusChem (2023), e202300973
Thorben Lenk, Valentin Rueß, Janko Gresch, Uwe Schröder
Exploring the electrochemical ring hydrogenation of furanic compounds
Green Chemistry (2023) 25(8), pp. 3077-3085
Thorben Lenk, Sahar Rabet, M. Sprich, Gabriele Raabe, Uwe Schröder
Insight into the Interaction of Furfural with Metallic Surfaces in the Electrochemical Hydrogenation Process
ChemPhysChem(2023) 24(5), e202200614
Michael Guschakowski, Uwe Schröder
Direct and indirect electrooxidation of glycerol to value-added products
ChemSusChem 14 (2021) 5216-5225
Falk Harnisch, Uwe Schröder
Tapping renewables - A new dawn for organic electrosynthesis in aqueous reaction media
ChemElectroChem 6 (2019) 4126–4133
Olusola O. James, Waldemar Sauter, Uwe Schröder
Towards selective electrochemical conversion of glycerol to 1,3-Propanediol
RSC Advances 8 (2018) 10818-10827
Waldemar Sauter, Olaf Lennart Bergmann, Uwe Schröder
Hydroxyacetone: A glycerol based platform for electrocatalytic hydrogenation and hydrodeoxygenation processes
ChemSusChem 10 (2017) 3105-3110 (VIP Paper)
Olusola O. James, Waldemar Sauter, Uwe Schröder
Electrochemistry for the Generation of Renewable Chemicals: One-Pot Electrochemical Deoxygenation of Xylose to δ-Valerolactone
ChemSusChem 10 (2017) 2015-2022
dos Santos, T.; Nilges, P.; Schröder, U.
Electrochemistry for biofuel generation: Transformation of fatty acids and triglycerides to "diesel -like" olefin/ether mixture and olefins.
ChemSusChem, 2015, 8 886-893
Harnisch, F.; Blei, I.; dos Santos, T.R.; Möller, M.; Nilges, P.; Eilts, P.; Schröder, U.
From the test-tube to the test-engine: Assessing the suitability of prospective liquid biofuel compounds.
RCS Advances 2013, 3, 9594-9605
Nilges, P., Schröder, U.:
Electrochemistry for biofuel generation: Production of furans by electrocatalytic hydrogenation of furfurals.
Energy and Environmental Science. 2013, 6, 2925-293
Nilges, P.; dos Santos, T.; Harnisch, F.; Schröder, U.
Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane.
Energy and Environmental Science 2012, 5 5231-5235
Electrochemistry in Environmental and Analytical Chemistry
Using electrochemical and analytical methods, we address issues in environmental chemistry and analytical chemistry.