Selected Publications of the past 10 years
Tants JN, Friedrich K, Neumann J, Schlundt A. (2025) Evolution of the RNA alternative decay cis element into a high-affinity target for the immunomodulatory protein Roquin.
RNA Biol. 2025, Accepted. https://doi.org/10.1080/15476286.2024.2448391
Dhamotharan K, Korn SM, Wacker A, Becker MA, Günther S, Schwalbe H, Schlundt A. (2024)A core network in the SARS-CoV-2 nucleocapsid NTD mediates structural integrity and selective RNA-binding.
Nat. Commun. 2024 Dec 9;15(1):10656. https://doi.org/10.1038/s41467-024-55024-0
Sieber A, Parr M, von Ehr J, Dhamotharan K, Kielkowski P, Brewer T, Schäpers A, Krafczyk R, Qi F, Schlundt A, Frishman D, Lassak J. (2024) EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences.
Nat. Commun. 2024 Dec 2;15(1):10465. https://doi.org/10.1038/s41467-024-54556-9
Mertinkus KR, Oxenfarth A, Richter C, Wacker A, Mata CP, Carazo JM, Schlundt A, Schwalbe H. (2024) Dissecting the Conformational Heterogeneity of Stem-Loop Substructures of the Fifth Element in the 5′-Untranslated Region of SARS-CoV‑2.
J. Am. Chem. Soc. 2024 Nov 6;146(44). https://doi.org/10.1021/jacs.4c08406
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. (2024)
Biosci Rep. 2024 Oct 30;44(10):BSR20240139. https://doi.org/10.1042/BSR20240139
Oberstrass L, Tants JN, Lichtenthaeler C, Ali SE, Koch L, Mathews DH, Schlundt A, Weigand J. (2024) Comprehensive Profiling of Roquin Binding Preferences for RNA Stem-Loops.
Angew Chem Int Ed Engl. 2024 Sep 30:e202412596. https://doi.org/10.1002/anie.202412596
Tants JN, Oberstrass L, Weigand JE, Schlundt A. (2024)Structure and RNA-binding of the helically extended Roquin CCCH-type zinc finger.
Nucleic Acids Res. 2024 Sep 9;52(16). https://doi.org.10.1093/nar/gkae555
von Ehr J, Oberstrass L, Yazgan E, Schnaubelt LI, Blümel N, McNicoll F, Weigand JE, Zarnack K, Müller-McNicoll M, Korn SM, Schlundt A. (2024). Arid5a uses disordered extensions of its core ARID domain for distinct DNA- and RNA-recognition and gene regulation.
J. Biol. Chem. 2024 Jun 10:107457. https://doi.org10.1016/j.jbc.2024.107457
Tants JN, Schlundt A. (2023) Advances, Applications, and Perspectives in Small-Angle X-ray Scattering of RNA.
Chembiochem. Sep 1;24(17):e202300110. https://doi.org10.1002/cbic.202300110
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A. (2023) The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements.
Nat. Commun. Jun 7;14(1):3331. https://doi.org10.1038/s41467-023-38882-y
Korn SM, von Ehr J, Dhamotharan K, Tants JN, Abele R, Schlundt A. (2023) Insight into the Structural Basis for Dual Nucleic Acid—Recognition by the Scaffold Attachment Factor B2 Protein.
Int. J. Mol. Sci. 24(4), 3286. https://doi.org/10.3390/ijms24043286
Schulte J, Tants JN, von Ehr J, Schlundt A, Morgner N. (2023) Determination of dissociation constants via quantitative mass spectrometry.
Front. Anal. Sci. 3:1119489. https://doi.org/10.3389/frans.2023.1119489
Duchardt-Ferner E, Ferner JP, Fürtig B, Hengesbach M, Richter C, Schlundt A, Sreeramulu S, Wacker A, Weigand JE, Wirmer-Bartoschek J & Schwalbe H. (2023) COVID19-NMR consortium: A public report on the impact of this new global collaboration.
Angew. Chem. Int. Ed. Feb 7. https://doi.org/10.1002/anie.202217171
Berg H, Wirtz Martin MA, Altincekic N, …, Schlundt A, …, Schwalbe H. (2022) Comprehensive fragment screening of the SARS-CoV-2 proteome explores novel chemical space for drug development.
Angew. Chem. Int. Ed. Sep 17. https://doi.10.1002/anie.202205858
Pontoriero L, Schiavina M, Korn SM, Schlundt A#, Pierattelli R# & Felli IC.# (2022) NMR reveals specific tracts within the intrinsically disordered regions of the SARS-CoV-2 Nucleocapsid protein involved in RNA encountering.
Biomolecules. Jul 2;12(7):929. https://doi.10.3390/biom12070929
Tants JN, Becker LM, McNicoll F, Müller-McNicoll M, Schlundt A. (2022)NMR-derived secondary structure of the full-length Ox40 mRNA 3'UTR and its multivalent binding to the immunoregulatory RBP Roquin.
Nucleic Acids Res. Apr 22;50(7):4083-4099. https://doi.org/10.1093/nar/gkac212
Korn SM, Schlundt A. (2022)Structures and nucleic acid-binding preferences of the eukaryotic ARID domain.
Biol. Chem. Feb 7;403(8-9):731-747. https://doi.org/10.1515/hsz-2021-0404
Schamber T, Binas O, Schlundt A, Wacker A, Schwalbe H. (2022) Characterization of Structure and Dynamics of the Guanidine-II Riboswitch from Escherichia coli by NMR Spectroscopy and Small-Angle X-ray Scattering (SAXS).
Chembiochem. Feb 4;23(3):e202100564. https://doi.org/10.1002/cbic.202100564
Sreeramulu S, Richter C, Berg H, Wirtz Martin MA, Ceylan B, Matzel T, Adam J, Altincekic N, Azzaoui K, Bains JK, Blommers MJJ, Ferner J, Furtig B, Gobel M, Grun JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Martins J, Mertinkus KR, Niesteruk A, Peter SA, Pyper DJ, Qureshi NS, Scheffer U, Schlundt A, Schnieders R, Stirnal E, Sudakov A, Troster A, Vogele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, Wohnert J & Schwalbe H. (2021) Exploring the druggability of conserved RNA regulatory elements in the SARS-CoV-2 genome.
Angew. Chem. Int. Ed. Engl. Aug 23;60(35):19191-19200. https://doi.org/10.1002/anie.202103693
Korn SM, Ulshofer CJ, Schneider T & Schlundt A. (2021) Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Review.
Structure. Aug 5;29(8):787-803. https://doi.org/10.1016/j.str.2021.05.001
Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, …, Bockmann A#, …, Schwalbe H#, …, Hengesbach M# & Schlundt A.# (2021) Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications.
Front. Mol. Biosci. May 10;8:653148. https://doi.org/10.3389/fmolb.2021.653148
Wacker A, Weigand JE, …, Schlundt A, …, Schwalbe H, …, Wohnert J & Zetzsche H. (2020) Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy.
Nucleic Acids Res 48: 12415-12435. https://doi.org/10.1093/nar/gkaa1013
Binas O, Tants JN, Peter SA, Janowski R, Davydova E, Braun J, Niessing D, Schwalbe H, Weigand JE# & Schlundt A.# (2020) Structural basis for the recognition of transiently structured AU-rich elements by Roquin.
Nucleic Acids Res. 48: 7385-7403. https://doi.org/10.1093/nar/gkaa465
Lingaraju M, Johnsen D, Schlundt A, Langer LM, Basquin J, Sattler M, Heick Jensen T, Falk S & Conti E. (2019) The MTR4 helicase recruits nuclear adaptors of the human RNA exosome using distinct arch-interacting motifs.
Nat. Commun. 10: 3393. https://doi.org/10.1038/s41467-019-11339-x
Schneider T, Hung LH, Aziz M, Wilmen A, Thaum S, Wagner J, Janowski R, Muller S, Schreiner S, Friedhoff P, Huttelmaier S, Niessing D, Sattler M, Schlundt A# & Bindereif A.# (2019) Combinatorial recognition of clustered RNA elements by the multidomain RNA-binding protein IMP3.
Nat. Commun. 10: 2266. https://doi.org/10.1038/s41467-019-09769-8
Schlundt A, Tants JN & Sattler M. (2017) Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Review.
Methods. 118-119: 119-136. https://doi.org/10.1016/j.ymeth.2017.03.015
Schlundt A, Buchner S, Janowski R, Heydenreich T, Heermann R, Lassak J, Geerlof A, Stehle R, Niessing D, Jung K & Sattler M. (2017) Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator.
Sci. Rep. 7: 1051. https://doi.org/10.1038/s41598-017-01031-9
Edelmann FT, Schlundt A, Heym RG, Jenner A, Niedner-Boblenz A, Syed MI, Paillart JC, Stehle R, Janowski R, Sattler M, Jansen RP & Niessing D. (2017) Molecular architecture and dynamics of ASH1 mRNA recognition by its mRNA-transport complex.
Nat. Struct. Mol. Biol. 24: 152-161. https://doi.org/10.1038/nsmb.3351
Schlundt A#, Niessing D, Heissmeyer V & Sattler M.# (2016) RNA recognition by Roquin in posttranscriptional gene regulation. Review.
Wiley Interdiscip Rev. RNA 7: 455-469. https://doi.org/10.1002/wrna.1333
Janowski R*, Heinz GA*, Schlundt A*, Wommelsdorf N, Brenner S, Gruber AR, Blank M, Buch T, Buhmann R, Zavolan M, Niessing D, Heissmeyer V & Sattler M. (2016) Roquin recognizes a non-canonical hexaloop structure in the 3'-UTR of Ox40.
Nat. Commun. 7: 11032. https://doi.org/10.1038/ncomms11032
Schlundt A*, Heinz GA*, Janowski R*, Geerlof A, Stehle R, Heissmeyer V, Niessing D & Sattler M. (2014) Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation.
Nat. Struct. Mol. Biol. 21: 671-678. https://doi.org/10.1038/nsmb.2855