2006 bis 2010
218. Tuning the size of silver deposits by templated electrodeposition using agarose gels, U. Hasse, F. Scholz J. Solid State Electrochem. 10 (2006) 380-382
219. Studying the coupled electron-ion transfer reaction at a thin film-modified electrode by means of square-wave voltammetry, V. Mirceski, F. Quentel, M. L'Her, F. Scholz J. Electroanal. Chem. 586 (2006) 86-97
224. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation,J. Niessen, F. Harnisch, M. Rosenbaum, U. Schröder, F. Scholz Electrochem. Commun. 8 (2006) 869–873
225. Recent Advances in the Electrochemistry of Ion Transfer Processes at Liquid-Liquid Interfaces, F. Scholz Annu. Rep. Progr. Chem., Section C 102 (2006) 43-70
226. One redox probe (dmfc) can drive the transfer of anions and cations across the aqueous electrolyte|ionic liquid interface, V. Agmo Hernández, F. Scholz Electrochem. Commun. 8 (2006) 967-972
227. Atomic force microscopic study of the chemical oxidation of silver crystals immobilized on platinum and on quartz, U. Hasse, F. Scholz, Electrochem. Commun. 8 (2006) 1005-1010
228. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell condition, M. Rosenbaum, U. Schröder, F. Scholz J. Solid State Electrochem. 10 (2006) 872-878
229. Challenges and constraints of using oxygen cathodes in microbial fuel cells, F. Zhao, F: Harnisch, U. Schröder, F: Scholz, P. Bogdanoff, I. Herrmann Environmental Science & Technology 40 (2006) 5193-5199
230. Nucleation-growth kinetics of the oxidation of silver nano-crystals to silver halide crystals, U. Hasse, S. Fletcher, F. Scholz J. Solid State Electrochem. 10 (2006) 833-840
231. Kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide Mastoparan X., V. Agmo Hernández, F. Scholz Langmuir 22 (2006) 10723-10731
232. Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell, M. Rosenbaum, F. Zhao, U. Schröder, F. Scholz (a) Angew. Chem. 118 (2006) 6810-6813, (b) Angew. Chem Int. Ed. 45 (2006) 6658-6661
233. Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis, G. López de Lara González, H. Kahlert, F. Scholz Electrochim. Acta 52 (2007) 1968-1974
234. The punctured droplet electrode – A new three-phase electrode with well defined geometry, E. Bąk, M. Donten, Z. Stojek, F. Scholz Electrochem. Commun. 9 (2007) 386–392
235. Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells, M. Rosenbaum, D. Zhao, M. Quaas, H. Wulff, U. Schröder, F. Scholz Appl. Catalysis B: Environmental 74 (2007) 262-270
236. Reply to the Comment on Kinetics of the Adhesion of DMPC Liposomes on a Mercury Electrode. Effect of Lamellarity, Phase Composition, Size and Curvature of Liposomes, and Presence of the Pore Forming Peptide Mastoparan X, V. Agmo Hernández, F. Scholz Langmuir 23 (2007) 8650
237. A model of mass transport near the tube wall in a flow-injection manifold, M. Lovrić, Š. Komorsky-Lovrić, H. Kahlert, F. Scholz Anal. Chim. Acta 602 (2007) 75-81
238. An electrochemical system to detect free radicals and radical scavengers in solution, F. Scholz, G. López de Lara González, L. Machado de Carvalho, M. Hilgemann, Kh. Z. Brainina, H. Kahlert, R. S. Jack, D. T. Minh (a) Angew. Chem. 119 (2007) 8225-8227 (b) Angew. Chem. Int. Ed. 46 (2007) 8079-8081
240. Studying ion transfers across a room temperature ionic liquid|aqueous electrolyte interface driven by redox reactions of lutetium bis(tetra-tert-butylphthalocyaninato), F. Quentel, C. Elleouet, V. Mirčeski, V. Agmo Hernández, M. L’Her, M. Lovrić, Š. Komorski-Lovrić, F. Scholz J. Electroanal. Chem. 611 (2007) 192-200
241. Theory of a reversible redox reaction in an ionic liquid which is coupled to an ion transfer across the aqueous electrolyte / ionic liquid interface, M. Lovric, Š. Komorsky-Lovric, F. Scholz J. Solid State Electrochem. 12 (2008) 41-45
242. Voltammetry of microparticles of Lutetium bisphthalocyanine, Š. Komorsky-Lovrić, F. Quentel, M. L'Her, F. Scholz J. Solid State Electrochem. 12 (2008) 165 -169
243. A potential high-throughput method for the determination of lipase activities by potentiometric flow injection titrations, K. Vahl, H. Kahlert, D. Böttcher, R. Wardenga, Š. Komorsky-Lovrić, U. Bornscheuer, F. Scholz Anal. Chim. Acta 610 (2008) 44-49
244. The Suitability of Monopolar and Bipolar Ion Exchange Membranes as Separators for Biological Fuel Cells, F. Harnisch, U. Schröder, F. Scholz Environ. Sci. Technol. 42 (2008) 1740–1746
245. Permanent Wood Sequestration: The Solution to the Global Carbon Dioxide Problem, F. Scholz, U. Hasse ChemSusChem 1 (2008) 381-384
248. Three-phase electrochemistry with a hanging drop of water-insoluble liquid Precipitation of decamethylferrocenium species as a marker of ion transfer route, M. Donten, E. Bak, M. Gniadek, Z. Stojek, F. Scholz Electrochim. Acta 53 (2008) 5608–5614
249. The adhesion and spreading of thrombocyte vesicles on electrode surfaces, V. Agmo Hernández, J. Niessen, F. Harnisch, S.Block, A. Greinacher, H. K. Kroemer, C. A. Helm, F. Scholz Bioelectrochem. 74 (2008) 210-216
250. The lipid composition determines the kinetics of adhesion and speading of liposomes on mercury electrodes, V. Agmo Hernández, F. Scholz Bioelectrochem. 74 (2008) 149-156
251. Walter Krösche (1882–1957) and the Mannich Reaction, F. Scholz Pharmazie 63 (2008) 916-918
252. The electrochemistry of liposomes, V. Agmo Hernández, F. Scholz Israel J. Chem. 48 (2008) 169-184
253. The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism, V. Agmo Hernández, M. Hermes, A. Milchev, F. Scholz J. Solid State Electrochem. 13 (2009) 639-649
254. Study of the temporal distribution of the adhesion-spreading events of liposomes on a mercury electrode, V. Agmo Hernández, A. Milchev, F. Scholz J. Solid State Electrochem. 13 (2009) 1111-1114
256. Reply to Comments on “Permanent Wood Sequestration: The Solution to the Global Carbon Dioxide Problem”, F. Scholz, U. Hasse ChemSusChem 2 (2009) 614-615
258. A tribute to Rolf Neeb (1929-2006) on the 80th anniversary of his birth, F. Scholz Anal. Bioanal Chem. 395 (2009) 1571-1573
259. Electrochemistry reveals archaeological materials, V. Costa, K. Leyssens, A. Adriaens, N. Richard, F. Scholz J. Solid State Electrochem. 14 (2010) 449-451
260. A belated tribute to the electrochemist Ernst Salomon, F. Scholz J. Solid State Electrochem. 14 (2010) 699-703
261. Electrochemical assay to quantify the hydroxyl radical scavenging activity of medicinal plant extracts, M. Hilgemann, F. Scholz, H. Kahlert, L. Machado de Carvalho, M. Barcellos da Rosa, U. Lindequist, M. Wurster, P. C. do Nascimento, D. Bohrer Electroanalysis 22 (2010) 406-412
262. Hydroxyl radicals attack metallic gold, A. M. Nowicka, U. Hasse, M. Hermes, F. Scholz (a) Angew. Chem. 122 (2010) 1079-1081 (b) Angew. Chem. Int. Ed. 49 (2010) 1061-1063
263. Selective knock-out of gold active sites, A. M. Nowicka, U. Hasse, G. Sievers, M. Donten, Z. Stojek, S. Fletcher, F. Scholz (a) Angew. Chem. 122 (2010) 3070-3073 (b) Angew. Chem. Int. Ed. 49 (2010) 3006-3009
264. A solid-state redox buffer as interface of solid-contact ISE – a strategy to improve the reproducibility and stability of potentials, F. Scholz, H. Kahlert, U. Hasse, A. C. Tagne Kuate, K. Jurkschat Electrochem. Commun. 12 (2010) 955-957
265. Mercury electrodes are indispensable tools for membrane research, Fritz Scholz Rev. Polarogr. 56 (2010) 63-65
266. Nobody can drink from closed bottles, or why it is so difficult to completely reduce solid TiO2 to solid Ti, F. Scholz ChemPhysChem 11 (2010) 2078-2079
267. Rapid automatic determination of calcium and magnesium in aqueous solutions by FIA using potentiometric detection, K. Vahl, H. Kahlert, F. Scholz Electroanalysis 22 (2010) 2172 – 2178
268. Activity changes of glassy carbon electrodes caused by their exposure to OH• radicals, T. Rapecki, A. M. Nowicka, M. Donten, F. Scholz, Z. Stojek Electrochem. Commun. 12 (2010) 1531-1534