Journal publications

2020

[31] Wei, R., Tiso, T., Bertling, J., O’Connor, K., Blank, L.M., Bornscheuer, U.T. (2020) Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis link

[30] Yan, F., Wei, R., Cui, Q, Bornscheuer, U.T., Liu, Y.-J. (2020) Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microbial Biotechnology  link

[29] Falkenstein, P., Gräsing, D., Bielytskyi, P., Zimmermann, W., Matysik, J., Wei, R., Song C. (2020) UV pretreatment impairs the enzymatic degradation of polyethylene terephthalate. Frontiers in Microbiology  11, 689 link

[28] Li, Z., Wei, R., Gao, M., Ren, Y., Yu, B., Nie, K., Xu, H., Liu, L. (2020) Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. Journal of Environmental Management  263, 110402 link

[27] Deng, H., Wei, R., Luo, W., Hu, L., Li, B., Di, Y., Shi, H. (2020) Microplastic pollution in water and sediment in a textile industrial area. Environmental Pollution  258, 113658 link

2019

[26] Wei, R., Song, C., Gräsing, D., Schneider, T., Bielytskyi, P., Böttcher, D., Matysik, J., Bornscheuer, U.T., Zimmermann, W. (2019) Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nature Communications  10, 5581  link

[25] Zhu, K., Li, G., Wei, R., Mao, Y., Zhao, Y., He, A., Bai, Z., Deng, Y. (2019) Systematic analysis of the effects of different nitrogen source and ICDH knockout on glycolate synthesis in Escherichia coli. Journal of Biological Engineering  13, 30 link

[24] Liu, L., Meng, S., Wei, R., Jiang, M., Wang, F., Nie, K., Tan, T. (2019) Improved stability of Baeyer–Villiger monooxygenase from Pseudomonas fluorescens by substitution of cysteine residues. Journal of Biobased Materials and Bioenergy  13, 490-497 link

[23] Wei, R., Breite, D., Song, C., Gräsing, D., Ploss, T., Hille, P., Schwerdtfeger, R., Matysik, J., Schulze, A., Zimmermann, W. (2019) Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures. Advanced Science  6, 1900491 link

[22] Salvador, M., Abdulmutalib, U., Gonzalez, J., Kim, J., Smith, A.A., Faulon, J.-L., Wei, R., Zimmermann, W., Jimenez, J.I. (2019) Microbial genes for a circular and sustainable bio-PET economy. Genes  10, 373 link

[21] Belisário-Ferrari, M.R., Wei, R., Schneider, T., Honak, A., Zimmermann, W. (2019) Fast turbidimetric assay for analyzing the enzymatic hydrolysis of polyethylene terephthalate model substrates. Biotechnology Journal  14, 1800272 link

2018 and earlier
[20] Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR. 2018. New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes. Applied and Environmental Microbiology 84:e02773-17.
[19] Sonnendecker C, Wei R, Kurze E, Wang J, Oeser T, Zimmermann W. 2017. Efficient extracellular recombinant production and purification of a Bacillus cyclodextrin glucanotransferase in Escherichia coli. Microbial Cell Factories 16:87.
[18] Wei R, Zimmermann W. 2017. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microbial Biotechnology 10(6):1302-1307.
[17] Wei R, Zimmermann W. 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microbial Biotechnology 10(6):1308-1322.
[16] Schmidt J, Wei R, Oeser T, Dedavid E Silva La, Breite D, Schulze A, Zimmermann W. 2017. Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymers 9(2): 65.
[15] Schmidt J, Wei R, Oeser T, Belisário-Ferrari MR, Barth M, Then J, Zimmermann W. 2016. Effect of Tris, MOPS and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio 6(9): 919-927.
[14] Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari Mr, Then J, Schmidt J, Zimmermann W. 2016. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal 11(8):1082-1087.
[13] Then J, Wei R, Oeser T, Gerdts A, Schmidt J, Barth M, Zimmermann W. 2016. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio 6(5):425-432.
[12] Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, Zimmermann W. 2016. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnology and Bioengineering 113(8): 1658-1665.
[11] Barth M, Wei R, Oeser T, Then J, Schmidt J, Wohlgemuth F, Zimmermann W. 2015. Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. Journal of Membrane Science 194: 182–187.
[10] Barth M, Oeser T, Wei R, Then J, Schmidt J, Zimmermann W. 2015. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca. Biochemical Engineering Journal 93:222–228.
[9] Wang J, Wei R, Tian J, Yang N, Xu X, Zimmermann W, Jin Z. 2015. Multi-wavelength colorimetric determination of large-ring cyclodextrin content for the cyclization activity of 4-α-glucanotransferase. Carbohydrate Polymers 122:329–335.
[8] Then J, Wei R, Oeser T, Barth M, Belisario-Ferrari Mr, Schmidt J, Zimmermann W. 2015. Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnology Journal 10:592–598.
[7] Berezina N, Yada B, Godfroid T, Senechal T, Wei R, Zimmermann W. 2015. Enzymatic surface treatment of poly (3-hydroxybutyrate) (PHB), and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Journal of Chemical Technology & Biotechnology 90:2036–2039.
[6] Wei R, Oeser T, Then J, Kühn N, Barth M, Schmidt J, Zimmermann W. 2014. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 4: 44.
[5] Roth C, Wei R, Oeser T, Then J, Föllner C, Zimmermann W, Sträter N. 2014. Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Applied Microbiology and Biotechnology 98:7815–7823.
[4] Wei R, Oeser T, Barth M, Weigl N, Luebs A, Schulz-Siegmund M, Hacker MC, Zimmermann W. 2014. Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles. Journal of Molecular Catalysis B: Enzymatic 103: 72–78.
[3] Wei R, Oeser T, Billig S, Zimmermann W. 2012. A high-throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection. Biotechnology Journal 7:1517-1521.
[2] Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, Trotscha E, Wei R, Zimmermann W, Zinn M, Cavaco-Paulo A, Freddi G, Schwab H, Guebitz G. 2011. Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44(12): 4632–4640.
[1] Oeser T, Wei R, Baumgarten T, Billig S, Föllner C, Zimmermann W. 2010. High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). Journal of Biotechnology 146:100-104.

Book chapters

[2] Wierckx, N., Narancic, T., Eberlein, C., Wei, R., Drzyzga, O., Magnin, A., Ballerstedt, H., Kenny S.T., Pollet, E., Avérous, L., O’Connor K.E., Zimmermann, W., Heipieper, H.J., Prieto, A., Jiménez, J., Blank, L.M. (2018) Plastic biodegradation: Challenges and opportunities. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham.  link

[1] Wei, R., Oeser, T., Zimmermann W. (2014) Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. In: Sariaslani, S., Gadd, G.M. (eds) Advances in Applied Microbiology 89: 267–305. Academic Press, Cambridge.  link